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Equation of State
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the Nuclear 
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High Temperatures
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This is a progress report on 
our eff orts to apply the results 
summarized in [1] to make new 
equations of state (EOS) and 

to generate new tables for the SESAME 
database. In our initial work, reported in [2] 
and last year’s volume, we described a theory 
that is applicable at all densities above ρref and 
at all temperatures below roughly fi ve times 
the melting temperature, at which point the 
nuclear motion becomes gaslike and renders 
our liquid theory inapplicable. Since a typical 
SESAME EOS [3] covers compressions from 
10–4 to 104 and temperatures up to 105 eV, to 
construct SESAME EOS using this theory 
we must consider how to extend its range of 
validity substantially. Th is requires meeting 
two challenges: (1) extend the EOS to higher 
densities, where density functional theory 
(DFT) and experimental results are not 
available but the theory is still sound, and (2) 
extend the theory itself to high temperatures, 
where the nuclear motion becomes gaslike, 
and to densities below ρref.

Last year we solved most of the fi rst problem, 
providing techniques to extend the melt 
curve, solid and liquid cold curves, and solid 
and liquid nuclear contributions to arbitrary 
density. Here we report our progress on the 
second challenge, extending the theory; 
we will also summarize the problems that 
remain.

Our underlying strategy remains the 
same as in [2]: relying on basic condensed 
matter theory and observed trends in low-
compression material behavior, we concluded 
that a generic material under extreme 
conditions will be a structureless metal 
crystal that melts normally to a metal liquid; 

we then develop interpolations between our 
original EOS and this high-compression 
and high-temperature state. By doing so, we 
incorporate the best physics in each region of 
temperature and compression.

Before extending the nuclear theory to high 
temperatures, we decided to incorporate 
into the low-temperature liquid theory 
[4] a phenomenological treatment of the 
“boundary term” in the free energy, the term 
that accounts for the fact that the potential 
valleys in which the system moves in the 
liquid state have boundaries that the liquid 
probes in its motion. While we do not have 
a detailed theory for this term, its eff ects on 
the free energy of a liquid are considerable. 
Experimental results for CV of nine liquid 
metals at atmospheric pressure and 
temperatures up to fi ve times melting are well 
fi t by the expression
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where k is Boltzmann’s constant, Tm is the 
melting temperature, and α = 0.17 best fi ts 
the data. (See Fig. 1.) We determined the free 
energy that produces this specifi c heat and 
that equals the no-boundary-term liquid free 
energy at melt, and we used it as our low-
temperature free energy for the liquid.

To determine the nuclear free energy at high 
temperature, we used the expression from 
pseudopotential perturbation theory,
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g ρ,T( ) = Ω ρ( ) + kT ln ρΛ3
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where the Ω term is responsible for metallic 
binding, φ is the interatomic potential, M
is the atomic mass, and Λ is the thermal 
de Broglie wavelength. By examining the 
relative sizes of the terms in Eq. 2, we were 
able to argue that the middle term was by far 
the largest, so only it needed to be retained in 
our theory.

Just as at low temperatures, the high-
temperature theory contains a term we 
have neglected up to this point: the eff ect 
of interactions between the motion of the 
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nuclei and thermal excitation of the electrons. 
At low temperatures, it can be shown that 
this term is much smaller than the electronic 
contribution, but at high temperatures that 
argument fails. However, we were able to 
argue that at high temperatures this term is 
much smaller than the nuclear contribution 
we considered in the previous paragraph, so 
it remains negligible at high temperatures, 
just as at low temperatures, but for a diff erent 
reason.

Finally, we constructed interpolation 
formulas between the low- and high-
temperature forms for the nuclear free energy 
as follows. We defi ned the nuclear free energy 
to be

Fnuc = χ Fph
l + 1 − χ( )Fnuc

g  (3)

where Fl
ph is the liquid free energy including 

boundary eff ects constructed at the 
beginning, Fnuc

g  is the high-temperature 
nuclear term we just considered, and the 
function χ monotonically decreases from 
1 at T = Tm to zero as T goes to infi nity, 
with the fi rst two temperature derivatives 
vanishing at Tm. Th is guarantees that the new 
Fnuc reproduces the old liquid free energy 
and thermodynamic functions at Tm while 
approaching the high-temperature free 
energy as T increases.

Th e only remaining tasks are (a) to extend the 
electronic contribution to high compressions 
and temperatures, and (b) to extend the full 
theory to densities below ρref. 

Details of this work can be found in [5].
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Figure 1—
Th e nuclear contribu-
tion to CV for pseudo-
potential sodium at 
ρ = 1.0063 g/cm3 as a 
function of T/Tm. Th e 
solid line is CV = 3k, 
the prediction of the 
liquid theory without 
any boundary term. 
Th e circles are mo-
lecular dynamics (MD) 
results, and the squares 
are values from Eq. 1 
with α = 0.17 evaluated 
at the same points. Th e 
diff erence between the 
MD and Eq. 1 is due to 
anharmonicity, which is 
present in the MD and 
slowly approaches zero 
as T increases.
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